Feb 22, 2022

“
IR,
IR,

bwHPC support team Hohenheim
kim-bw-projekt @uni-hohenheim.de

GNU Parallel & SLURM's srun

University of Hohenheim

UNIVERSITA

y HOHENHEI

[T
1818

mailto:kim-bw-projekt@uni-hohenheim.de

B
x = GNU parallel: All-purpose parallelisation gy UNIVERSITA
bw|HPC Ry HOHENHEI

GNU parallel allows to

run any (executable) program(s) in parallel with no communication between program
instances

Allows to run many parallelisations on a fixed number of nodes: one finishes - the
next starts

Does not have to be loaded via module load

Why GNU parallel?

* Not much overhead for learning standard usage (+ a bit more)
* Nice features, e.g. rerun only failed jobs

What does GNU parallel not do (well)?

» Parallelisation with (meaningful) communication between instances
* Efficient multi-node use

* Collection of output

O. Tange (2018): GNU Parallel 2018, March 2018, https.//doi.org/10.5281/zenodo.1146014.
https://www.gnu.org/software/parallel/

Feb 22, 2022 GNU Parallel & SLURM'’s srun University of Hohenheim

https://doi.org/10.5281/zenodo.1146014.

4 *ﬂ
-, g.,i, Running in parallel with srun - 1st example N UNIVERSITAT

bw|HPC 1Y HOHENHEIM

» Our focus is on working on the bwUniCluster — which e.g. uses SLURM as a
workload manager and has GNU parallel installed. All examples are run on
bwUniCluster's command line. If run elsewhere, you need to adjust some
commands.

 Let’s start an interactive session for 30 min w. 2 cores
$ salloc -t 30 -p dev_single -n 2

» We will often run the executable bash script scr1 with 2 arguments

GNU nano 2.9.8 scril

date "+%X’

sleep 3*51
"this is job S$2"
"I slept 3 x $1 seconds”

o=
bw|HPC
e gl 32

https://wiki.bwhpc.de/e/Category:BwUniCluster_2.0

sa iz
ﬁ Generate the executable scril
bw|HPC

1. Copy & paste into a (text) file scr1

#!/bin/sh

date '+%X'

sleep $((3*$1))

echo "this is job $2"

echo "l slept 3 x $1 seconds"

2. Make it executable via $ chmod u+x scr1

Feb 22, 2022 GNU Parallel & SLURM'’s srun

University of Hohenheim

y HOHENHEI

[T
1818

sa iz

B ,

= GNU parallel - main syntax =
bW‘HPC iy HOHENHEI

$ parallel [options] executable ::: arg1 arg2 arg3 ...
Runs the executable in parallel: 1x with arg1, 1x with arg2,
(options are ... optional and are set via -optionname)

We start an interactive session and try this out

$ date '+%X' && parallel echo ::: 10 10 && date '+%X'
$ date '+%X' && parallel sleep ::: 10 10 && date '+%X'

Commands after && get executed directly after the one(s) in front - given
everything in front ran successful)

Feb 22, 2022 GNU Parallel & SLURM'’s srun University of Hohenheim

IR,
x b GNU parallel - two options cfaasasy S
bw|HPC Ry HOHENHEI

 Instead of manually providing arguments, you can use a file (one line=one
argument for parallel)

$ parallel -a argfile executable #different order than on last slide, since
#provided via option -a

« For many runs in parallel (# runs > 2*ntasks):

$ parallel -j how_many in_parallel -a argfile executable

* -j specifies how many jobs (at most) are run in parallel at a given time
 if j is not specified, it runs as many jobs at the same time as there are
cores

Feb 22, 2022 GNU Parallel & SLURM'’s srun University of Hohenheim

B,
B
x P, GNU parallel - multiple arguments

y HOHENHEI

bW ‘ HPC [T T

Combining multiple arguments with

$ parallel executable {1} {2} ::: arguments1 ::: arguments2

runs the executable with all combinations of arguments1 and arguments2

$ parallel --link executable {1} {2} ::: args1 ::: args2

runs the executable with combining arg #1 from args? with arg #1

from args2, arg

#2 with arg #2, If arguments differ in length, shorter one gets recycled

Examples:
$ parallel --link ./scr1 {1} {2} :::5252:::1234

$ parallel -j 2 —-link ./scr1 {1} {2} ::: 52 :::1234
What do the commands do?

Feb 22, 2022 GNU Parallel & SLURM'’s srun University of Hohenheim

I

o,
x B, GNU parallel - more options w. bash
bw|HPC

y HOHENHEI

[T
1818

Helpful bash commands to use w. GNU parallel:

Let x,y,z be numbers
seq x y z: series from x to z in steps of y
Can be used as input arguments for GNU parallel by $(seq x y z)
pipe operator | allows to generate arguments from other commands

Brace expansion to mix words with numbers (see example below)
Many more

Examples:

$ parallel --link ./scr1 ::: 12 ::: $(seq 110 1)
$ parallel --link ./scr1 ::: 12 ::: job{1..10}

$ Is | parallel echo "FILE IS " {} #works also without {}

What do these commands do?

Using pipes etc. may lead to some trial&error (syntax needs to be met)...

Feb 22, 2022 GNU Parallel & SLURM'’s srun University of Hohenheim

Sa 3 GNU parallel -\ UNIVERSITAT
bw|HPC - some more job control options Wiy HOHENHEIM
Option (short) Meaning
-a f1-af2 Run with all combinations from two input files f1 and f2

Add --link to run 1st argument w. 1st argument,...
--joblog f1 1st run: run w. --joblog to add journal log f1 (filename)
--resume-failed 2nd run: run w. both options to rerun only the failed jobs from f1
(--resume) (Alternatively for 2nd run: rerun jobs not run yet)
{#} Instead of an argument provided after ::: or via -a, inputs the job

number among all parallelised instances
--citation Citation info, please cite it if you use it for publications

Many more: Either $ man parallel or

Nice tutorial: https://www.gnu.org/software/parallel/parallel_tutorial.html

R
bw|HPC B,
| bd 3

https://www.gnu.org/software/parallel/parallel.html#options
https://www.gnu.org/software/parallel/parallel_tutorial.html

B
x) SLURM’s built-in parallelisation: srun gy UNIVERSITA
bw|HPC Ry HOHENHEI

srun allows to

* run any (executable) program(s) in parallel with no communication between program
instances

* Allows to run MPI-using programs that allow communication between program instances

* Does not have to be loaded via module load

Why srun?

* You can control how the program instances are distributed across cores/nodes
* Allows mpi use, i.e. It is the built-in SLURM machinery to run mpi programs
 SLURM allows a lot of reporting

Where does srun need help?

* |t starts all jobs in parallel - workarounds needed if you want to run more than the
requested number of tasks

» Collection of output (when running independent instances)

SLURM: https://slurm.schedmd.com/overview.html
srun man page: https://slurm.schedmd.com/srun.html

Feb 22, 2022 GNU Parallel & SLURM'’s srun University of Hohenheim

https://slurm.schedmd.com/overview.html

b ca

=
x L srun basics - run one program in parallel =
bw|HPC Ty HOHENHEI

* While srun can also request resources alongside the program call, we use it

here only within a SBATCH script (or analogously within resources allocated
via salloc)

General syntax: $ srun srun-options executable executable-args/opts

« Simplest way to run it:
$ srun -n no_tasks executable [args _ex1]

Runs an executable file (via ./executable 1, via program path) n times in
parallel (optionally with arguments args_ex1)

» Use this e.g. when collecting all output from simulations in the same file in
parallel

» Or for a multi-threaded program that runs on multiple cores

Example: $ srun -n 2 ./scr1 5 1

Feb 22, 2022 GNU Parallel & SLURM'’s srun University of Hohenheim

B
x E) srun - multiple executables and/or UNIVERSITA
bw‘HPC multiple arguments

\ 1 Yy HOHENHEI

* Run multiple instances of srun with one command, separated by colons :
$ srun srun-opt1 exec1 exec1-args : srun-opt2 exec2 exec2-args : ...

e.g.
$ srun-n4 execl:-n3 exec2:-n2exec3

runs exec1 4 times, exec2 3 times and exec3 2 times (all in parallel). However,
each instance runs on a separate node (produces an error if not enough nodes
allocated).

» Better way to run it, works on a single node:
$ srun -n no_jobs --multiprog input_file

The input file is a text file, where each line shows, separated by a blank space,
* Which task to run with these arguments (indicated by number 0,1,...,n-1)
* Program to be run
* Program parameters

Feb 22, 2022 GNU Parallel & SLURM'’s srun University of Hohenheim

7
x Fr srun - the next example gy UNIVERSIIA
bw|HPC Ry HOHENHEI

Run scr1 w. two different sets of arguments

$srun-n1./'scri151:-n1./scr122

What does the command do? Does it run on our resources? Why not?

« Exercise: Do the exact same via --multiprog.

See the next slide for an example file for --multiprog

Feb 22, 2022 GNU Parallel & SLURM'’s srun University of Hohenheim

An example of a --multiprog input file ooy UNIVERSITA
\rry HOHENHEI

1818

multiprog.txt
« If multiple tasks have the same
arguments, you can separate them via
comma an/or specify a range from-to
Example: 0,3-5 ./fun1 7
runs ./fun1 w. argument 7 as tasks
0,3,4,5
Setting * as task number runs all tasks
not specified in lines above it with the
arguments in that line

B .
i
2 .
3 ;
4 .
5 .
6

7
8

9 .

BoWLn = W iLnbnln
= O O~ L WwhN e

Feb 22, 2022 GNU Parallel & SLURM'’s srun University of Hohenheim

o,

Ak srun - some more job control options ooona) UNIVERSITAT

bW‘HPC oy HOHENHEIM

Option (short) Meaning

--exclusive Only allocate memory matching to the number of cores used for
srun

-N min-max Spread job over at least min nodes, at most max nodes

--spread-job Spreads jobs across nodes in a balanced manner

-r offset Start distributing process instances on node offset of the current
allocation (default value 0)

-C tasks-per Each invoked process instance gets tasks-per cores allocated

-V [-v ..] shows details of how srun distributes the jobs. Adding it multiple
times increases the show information.

—~gpus-per-task=number Tgke number of GPUs per invoked process

All entries in italics are integer-valued

Full (long) list: worth looking at, e.g

--distribution to have precise control over how tasks are distributed

bw|HPC "y ;aa
bd 3

https://slurm.schedmd.com/srun.html

PR
x ﬁ A word on output files from running many
bW‘HPC tasks via GNU parallel [7y HOHENHEI

* GNU parallel allows to run many tasks, which possibly all write an output into a
file

Writing many files (e.g. tens of thousands, millions) within a workspace is not
ideal for the memory system underlying the workspaces (and really bad on
$HOME)

Solution (within SBATCH or salloc): Write the ouput files to the temporary
directory
« Each salloc or sbatch job has its own temporal directory while it exists
« Its path is stored in the variable $TMP (within the job allocation)
« Write output there, and then move it back at the end of the SBATCH
script/interactive session

$ echo $TMP

$cd $TMP

$ echo "THIS IS THE TMP: " $TMP > temp1.txt
$ cp temp1.txt SHOME/temp1.txt

Feb 22, 2022 GNU Parallel & SLURM'’s srun University of Hohenheim

IR,
x ﬁ Combining srun and GNU parallel to UNIVERSITA
bw‘HPC (comfortably) run on multiple nodes oy HOHENHEI

* Run many jobs in parallel by GNU parallel, but wrap the executable into a srun
to use srun’s job control

Example (needs two cores to run, so you'd need a new resource call):
$ parallel -j 8 --link srun --exclusive -N 1 -n 1 -r {1} 01

Runs 24 instances of exec1 with different parameters, at most 8 at one time,
each one on one core/one node. Each second instance runs on node 2, all others
on node 1. All instances get only default memory per node allocated

IMPORTANT! You need to set --exclusive, otherwise the first instance gets all
resources allocated

Feb 22, 2022 GNU Parallel & SLURM'’s srun University of Hohenheim

