
Feb 22, 2022 GNU Parallel & SLURM’s srun University of Hohenheim1

Parallelisation via srunand GNU parallel

bwHPC support team Hohenheimkim-bw-projekt@uni-hohenheim.de

mailto:kim-bw-projekt@uni-hohenheim.de

Feb 22, 2022 GNU Parallel & SLURM’s srun University of Hohenheim2

GNU parallel allows to
• run any (executable) program(s) in parallel with no communication between programinstances• Allows to run many parallelisations on a fixed number of nodes: one finishes - thenext starts• Does not have to be loaded via module load
Why GNU parallel?• Not much overhead for learning standard usage (+ a bit more)• Nice features, e.g. rerun only failed jobs
What does GNU parallel not do (well)?• Parallelisation with (meaningful) communication between instances• Efficient multi-node use• Collection of output

O. Tange (2018): GNU Parallel 2018, March 2018, https://doi.org/10.5281/zenodo.1146014.https://www.gnu.org/software/parallel/.

GNU parallel: All-purpose parallelisation

https://doi.org/10.5281/zenodo.1146014.

Feb 22, 2022 GNU Parallel & SLURM’s srun University of Hohenheim3

• Our focus is on working on the bwUniCluster – which e.g. uses SLURM as aworkload manager and has GNU parallel installed. All examples are run onbwUniCluster’s command line. If run elsewhere, you need to adjust somecommands.

• Let’s start an interactive session for 30 min w. 2 cores$ salloc -t 30 -p dev_single -n 2
• We will often run the executable bash script scr1 with 2 arguments

Running in parallel with srun - 1st example

https://wiki.bwhpc.de/e/Category:BwUniCluster_2.0

Feb 22, 2022 GNU Parallel & SLURM’s srun University of Hohenheim4

1. Copy & paste into a (text) file scr1
#!/bin/shdate '+%X'sleep $((3*$1))echo "this is job $2"echo "I slept 3 x $1 seconds"
2. Make it executable via $ chmod u+x scr1

Generate the executable scr1

Feb 22, 2022 GNU Parallel & SLURM’s srun University of Hohenheim5

$ parallel [options] executable ::: arg1 arg2 arg3 ...
Runs the executable in parallel: 1x with arg1, 1x with arg2,(options are ... optional and are set via -optionname)

We start an interactive session and try this out
$ date '+%X' && parallel echo ::: 10 10 && date '+%X'$ date '+%X' && parallel sleep ::: 10 10 && date '+%X'
Commands after && get executed directly after the one(s) in front - giveneverything in front ran successful)

GNU parallel - main syntax

Feb 22, 2022 GNU Parallel & SLURM’s srun University of Hohenheim6

• Instead of manually providing arguments, you can use a file (one line=oneargument for parallel)
$ parallel -a argfile executable #different order than on last slide, since#provided via option -a

• For many runs in parallel (# runs > 2*ntasks):
$ parallel -j how_many_in_parallel -a argfile executable

• -j specifies how many jobs (at most) are run in parallel at a given time• if j is not specified, it runs as many jobs at the same time as there arecores

GNU parallel - two options

Feb 22, 2022 GNU Parallel & SLURM’s srun University of Hohenheim7

Combining multiple arguments with
$ parallel executable {1} {2} ::: arguments1 ::: arguments2
runs the executable with all combinations of arguments1 and arguments2
$ parallel --link executable {1} {2} ::: args1 ::: args2
runs the executable with combining arg #1 from args1 with arg #1 from args2, arg#2 with arg #2, If arguments differ in length, shorter one gets recycled
Examples:
$ parallel --link ./scr1 {1} {2} ::: 5 2 5 2 ::: 1 2 3 4$ parallel -j 2 --link ./scr1 {1} {2} ::: 5 2 ::: 1 2 3 4What do the commands do?

GNU parallel - multiple arguments

Feb 22, 2022 GNU Parallel & SLURM’s srun University of Hohenheim8

Helpful bash commands to use w. GNU parallel:
Let x,y,z be numbers• seq x y z: series from x to z in steps of y• Can be used as input arguments for GNU parallel by $(seq x y z)• pipe operator | allows to generate arguments from other commands• Brace expansion to mix words with numbers (see example below)• Many more
Examples:$ parallel --link ./scr1 ::: 1 2 ::: $(seq 1 10 1)$ parallel --link ./scr1 ::: 12 ::: job{1..10}$ ls | parallel echo "FILE IS " {} #works also without {}

What do these commands do?
Using pipes etc. may lead to some trial&error (syntax needs to be met)...

GNU parallel - more options w. bash

Feb 22, 2022 GNU Parallel & SLURM’s srun University of Hohenheim9

Many more: Either $ man parallel orhttps://www.gnu.org/software/parallel/parallel.html#options

Nice tutorial: https://www.gnu.org/software/parallel/parallel_tutorial.html(you don’t need remote running via -S or -ssh, since we run via SBATCH-scripts directly on the cluster)

GNU parallel- some more job control options
Option (short) Meaning
-a f1 -a f2 Run with all combinations from two input files f1 and f2

Add --link to run 1st argument w. 1st argument,...
--joblog f1--resume-failed(--resume)

1st run: run w. --joblog to add journal log f1 (filename)2nd run: run w. both options to rerun only the failed jobs from f1(Alternatively for 2nd run: rerun jobs not run yet)
{#} Instead of an argument provided after ::: or via -a, inputs the jobnumber among all parallelised instances
--citation Citation info, please cite it if you use it for publications

https://www.gnu.org/software/parallel/parallel.html#options
https://www.gnu.org/software/parallel/parallel_tutorial.html

Feb 22, 2022 GNU Parallel & SLURM’s srun University of Hohenheim10

srun allows to• run any (executable) program(s) in parallel with no communication between programinstances• Allows to run MPI-using programs that allow communication between program instances• Does not have to be loaded via module load
Why srun?• You can control how the program instances are distributed across cores/nodes• Allows mpi use, i.e. It is the built-in SLURM machinery to run mpi programs• SLURM allows a lot of reporting
Where does srun need help?• It starts all jobs in parallel - workarounds needed if you want to run more than therequested number of tasks• Collection of output (when running independent instances)

SLURM: https://slurm.schedmd.com/overview.htmlsrun man page: https://slurm.schedmd.com/srun.html

SLURM’s built-in parallelisation: srun

https://slurm.schedmd.com/overview.html

Feb 22, 2022 GNU Parallel & SLURM’s srun University of Hohenheim11

• While srun can also request resources alongside the program call, we use ithere only within a SBATCH script (or analogously within resources allocatedvia salloc)
• General syntax: $ srun srun-options executable executable-args/opts
• Simplest way to run it:$ srun -n no_tasks executable [args_ex1]
Runs an executable file (via ./executable_1, via program path) n times inparallel (optionally with arguments args_ex1)• Use this e.g. when collecting all output from simulations in the same file inparallel• Or for a multi-threaded program that runs on multiple cores

Example: $ srun -n 2 ./scr1 5 1

srun basics - run one program in parallel

Feb 22, 2022 GNU Parallel & SLURM’s srun University of Hohenheim12

• Run multiple instances of srun with one command, separated by colons :$ srun srun-opt1 exec1 exec1-args : srun-opt2 exec2 exec2-args : ...e.g. $ srun -n 4 exec1 : -n 3 exec2 : -n 2 exec 3
runs exec1 4 times, exec2 3 times and exec3 2 times (all in parallel). However,each instance runs on a separate node (produces an error if not enough nodesallocated).

• Better way to run it, works on a single node:$ srun -n no_jobs --multiprog input_file

The input file is a text file, where each line shows, separated by a blank space,• Which task to run with these arguments (indicated by number 0,1,...,n-1)• Program to be run• Program parameters

srun - multiple executables and/ormultiple arguments

Feb 22, 2022 GNU Parallel & SLURM’s srun University of Hohenheim13

Run scr1 w. two different sets of arguments

$ srun -n 1 ./scr1 5 1 : -n 1 ./scr1 2 2
What does the command do? Does it run on our resources? Why not?

• Exercise: Do the exact same via --multiprog.
See the next slide for an example file for --multiprog

srun - the next example

Feb 22, 2022 GNU Parallel & SLURM’s srun University of Hohenheim14

An example of a --multiprog input file

• If multiple tasks have the samearguments, you can separate them viacomma an/or specify a range from-toExample: 0,3-5 ./fun1 7runs ./fun1 w. argument 7 as tasks0,3,4,5• Setting * as task number runs all tasksnot specified in lines above it with thearguments in that line

Feb 22, 2022 GNU Parallel & SLURM’s srun University of Hohenheim15

All entries in italics are integer-valued
Full (long) list: https://slurm.schedmd.com/srun.html worth looking at, e.g--distribution to have precise control over how tasks are distributed

srun - some more job control options

Option (short) Meaning
--exclusive Only allocate memory matching to the number of cores used forsrun
-N min-max Spread job over at least min nodes, at most max nodes
--spread-job Spreads jobs across nodes in a balanced manner
-r offset Start distributing process instances on node offset of the currentallocation (default value 0)
-c tasks-per Each invoked process instance gets tasks-per cores allocated
-v [-v ...] shows details of how srun distributes the jobs. Adding it multipletimes increases the show information.
--gpus-per-task=number Take number of GPUs per invoked process

https://slurm.schedmd.com/srun.html

Feb 22, 2022 GNU Parallel & SLURM’s srun University of Hohenheim16

• GNU parallel allows to run many tasks, which possibly all write an output into afile
• Writing many files (e.g. tens of thousands, millions) within a workspace is notideal for the memory system underlying the workspaces (and really bad on$HOME)
• Solution (within SBATCH or salloc): Write the ouput files to the temporarydirectory• Each salloc or sbatch job has its own temporal directory while it exists• Its path is stored in the variable $TMP (within the job allocation)• Write output there, and then move it back at the end of the SBATCHscript/interactive session

$ echo TMP cd TMP echo "THIS IS THE TMP: " $TMP > temp1.txt$ cp temp1.txt $HOME/temp1.txt

A word on output files from running manytasks via GNU parallel

"

Feb 22, 2022 GNU Parallel & SLURM’s srun University of Hohenheim17

• Run many jobs in parallel by GNU parallel, but wrap the executable into a srunto use srun’s job control
Example (needs two cores to run, so you’d need a new resource call):$ parallel -j 8 --link srun --exclusive -N 1 -n 1 -r {1} ./scr1 {2} {#} ::: 0 1 ::: 6 11 1 1 1 1 6 7 1 2 1 2 5 6 7 8 1 2 3 1 2 4 7
Runs 24 instances of exec1 with different parameters, at most 8 at one time,each one on one core/one node. Each second instance runs on node 2, all otherson node 1. All instances get only default memory per node allocated

IMPORTANT!! You need to set --exclusive, otherwise the first instance gets allresources allocated

Combining srun and GNU parallel to(comfortably) run on multiple nodes

